A Crispr Cow Is Born. It’s Definitely a Boy

The calf was late. His due date, March 30, had come and gone. At first, Alison Van Eenennaam chalked it up to male calves tending to arrive a day or two on the tardy side. As the week wore on, the animal geneticist reminded herself that gene-edited embryos—like the one that had been growing inside Cow 3113 for the past nine months—can take a little longer to signal to their surrogate mothers that they’re ready to be born. But by the following week, two false alarms at the UC Davis Beef Barn later, with still no signs of impending labor, Van Eenennaam’s fraying nerves had had enough. She called the vet. It was time to induce.
After nearly five years of research, at least half a million dollars, dozens of failed pregnancies, and countless scientific setbacks, Van Eenennaam’s pioneering attempt to create a line of Crispr’d cattle tailored to the needs of the beef industry all came down to this one calf. Who, as luck seemed sure to have it, was about to enter the world in the middle of a global pandemic .Just weeks prior, California’s governor had ordered the entire state to stay home to avoid spreading a deadly new coronavirus . That was following the discovery of the US’ first case of community spread. The patient was treated at the UC Davis Medical Center, about 20 miles away from the Beef Barn. ICU beds in the Bay Area were filling up. Van Eenennaam was worried about what might happen if the delivery went south and they needed to do a C-section; veterinarians were being asked to save their sedatives to help fill the growing demand for (human) Covid-19 patients on ventilators. And as if that wasn’t ominous enough, the veterinary resident who arrived that day to oversee the birth had spent the morning putting down a number of sheep from the UC Davis herd that had been mangled by coyotes in the night.
“Given how this project has gone, this seriously couldn’t have ended much differently,” Van Eenennaam said, her Australian lilt tinged with uneasy sarcasm. “It’s like the three riders of the apocalypse are probably going to be right on his tail.”That’s not exactly what happened. The calf arrived that afternoon, 110 pounds and jet black, save for an ankle-grazing splash of white above his rear hooves. Two vets had to extract him from Cow 3113 with chains, but when he was lowered onto the straw-covered barnyard, he was alive and breathing. “Cosmoooooooooo,” Van Eenennaam would shout in triumph. “Welcome to the world, little guy!”

The sky did not darken, and the world did not end. But the black calf, while big and strong and healthy, wasn’t exactly what the scientists had hoped to create. A close look at his DNA would expose just how unpredictable Crispr gene editing can be, and how much more scientists still need to learn before the technology can become routine practice for animal reproduction.

Joey Owen had never really been an animal guy. He’d studied biochemistry and then cancer genetics before bouncing his way into Van Eenennaam’s livestock lab in 2014. It was a hopeful time for scientists like them. Crispr’s genome-engineering potential had been discovered just two years before. It opened up the possibility of creating designer domesticates without the need to port genes from one species into another. Older genetic engineering technologies relied on using viruses and bacteria to shuttle DNA around, triggering an expensive and lengthy approval process from US regulators. As a result, American farmers and ranchers had to this point relied only on the plodding progress of selective breeding to improve the genes of their herds and flocks. Crispr promised to change that .