Gulley, a geoscientist at Florida State University, is in Greenland to pick up and bring home 12,000 pounds of scientific monitoring equipment at a remote field camp on the southeastern edge of the ice sheet. He and his colleagues have spent the past three summers on the ice exploring the moulins with remote instruments, using bags of brightly colored tracer dye that they throw into the water and then film using a drone flying overhead. They’ve also pushed the limits by rappelling directly into the caverns to find out where all that meltwater is going. Gulley and an ice climbing specialist, Will Gadd, even trained to dive into one of these meltwater-filled rooms during an expedition sponsored by Red Bull last fall, but the conditions were too dangerous (see their adventures here).During the past few years, Gulley and his team have found previously unknown reservoirs, like storage tanks for meltwater. He believes these house-size reservoirs act to slow down or speed up the glacier’s movement by regulating how much meltwater reaches the bedrock below. Gulley co-authored a 2014 Nature paper that described Greenland’s unusual drainage system. Since then he’s found more of these chambers that help control how fast the entire section of the ice sheet moves, although he and others are still trying to piece together how the whole system works.
“As meltwater happens, it lubricates and allows the ice sheet to move faster,” Gulley said. “But a large amount of water at the top of a glacier doesn’t mean a lot at the bottom.”Gulley says he doesn't know exactly how many reservoirs there are in the ice sheet or how much meltwater they sop up. Tracking down the whereabouts of the meltwater is important if scientists are to understand how long Greenland’s glaciers will survive the warming planet. At current projections of industrial carbon emissions, melting in Greenland will add more than five feet to global sea level rise over the next 200 years, according to a June study published in the journal Science Advances by researchers at the University of Alaska-Fairbanks and NASA. That five feet means goodbye to most of Florida, New York City, Boston and a host of other low-lying cities. The study also projected that Greenland’s ice sheet will completely melt in the next 1,000 years unless society drastically reduces carbon emissions and bends the climate curve.