Mind Control for the Masses—No Implant Needed

When Sid Kouider showed up at Slush, the annual startup showcase in Helsinki, wearing an ascot cap and a device he claimed would usher in a new era of technological mind control, no one thought he was crazy. No, he was merely joining the long line of entrepreneurs (see: Elon Musk , Mark Zuckerberg ) who believe that we will one day manage our machines with our thoughts.The quest to meld mind and machine dates back to at least the 1970s, when scientists began, in earnest, to drill into peoples’ skulls and implant the first brain-computer interfaces—electrodes that translate brain cell activity into data. Today, BCIs can regulate tremors from Parkinson’s disease and restore some basic movement in people with paralysis. But they are still surgically implanted, and still quite experimental. Even so, the likes of Musk already envision a future where we’ll all have chips in our brains, and they’ll replace our need for keyboards, mice, touchscreens, joysticks, steering wheels, and more.
Of course, that won’t happen anytime soon. The mysteries of the mind remain vast, and implanting hardware in healthy brains—well, forget about that, at least until the FDA deems it safe (lightyears away). In the meantime, a wave of companies is betting on bringing Mind Control Lite to the masses with a neural interface that requires no surgery at all.That’s where Kouider comes in. His startup, NextMind, makes a non-invasive neural interface that sits on the back of one’s head, and translates brain waves into data that can be used to control compatible software. Kouider’s vision begins with simple tasks (sending text messages with a thought, calling up a specific photo in your camera roll with passing thoughts) and ends somewhere close to science fiction (controlling every device in our world, like the sorcerer in Fantasia). “This is real,” he said onstage at Slush, “and the possibilities are endless.”
Going the non-surgical route comes with some trade-offs, namely all that skin and bone between your soggy brain and any device that’s trying to read the neural signals it emits. On the other hand, it’s cheaper, it’s safer, and it’s much easier to iterate or push software updates when you don’t need to open someone’s head. And for all the promise of BCIs, people first need to see that this stuff can be useful at all. For that, devices like NextMind’s do the trick.I had a chance to try out the NextMind device during a demo in December, a few weeks after Kouider gave his Slush talk. He had taken a flight from Paris to San Francisco and carried the device casually in his bag. It weighs 60 grams, about as much as a kiwi fruit, and bears a passing resemblance to flattened TIE fighter.
The NextMind device is basically a dressed-up electroencephalogram, or EEG, which is used to record electrical activity in the brain. It’s not so different from the tools Kouider used as a professor of neuroscience before he ran NextMind. His lab, in Paris, specialized in studies of consciousness . In a hospital setting, EEGs often require the use of gel and some skin preparation, but recently researchers have developed functional dry electrodes that only require contact with the skull. The NextMind device uses these, along with a proprietary material that Kouider says is “very sensitive to electrical signals.” (He wouldn’t tell me what, exactly, the material is.)

Kouider placed the device on my head; it comes with little comb-like teeth that brush through hair to hold the device in place, right on the back of the skull. (Kouider, who is bald, wears it clipped to the back of his hat.) There, the device’s electrodes are well positioned to record activity from the visual cortex, a small area in the rear of the brain. Then it translates the signals to digital data, processes them on the computer, uses a machine learning algorithm to decipher them, and translates those signals into commands.