Yet over the past two years, researchers have rewritten nearly every major chapter of the galaxy’s history. What happened? They got better data.
On April 25, 2018, a European spacecraft by the name of Gaia released a staggering quantity of information about the sky. Critically, Gaia’s years-long data set described the detailed motions of roughly 1 billion stars. Previous surveys had mapped the movement of just thousands. The data brought a previously static swath of the galaxy to life. “Gaia started a new revolution,” said Federico Sestito, an astronomer at the Strasbourg Astronomical Observatory in France.Astronomers raced to download the dynamic star map, and a flurry of discoveries followed. They found that parts of the disk, for example, appeared impossibly ancient. They also found evidence of epic collisions that shaped the Milky Way’s violent youth, as well as new signs that the galaxy continues to churn in an unexpected way.The Earliest Stars
To peer back to the galaxy’s earliest days, astronomers seek stars that were around back then. These stars were fashioned only from hydrogen and helium, the cosmos’s rawest materials. Fortunately, the smaller stars from this early stock are also slow to burn, so many are still shining.
After decades of surveys, researchers had assembled a catalog of 42 such ancients, known as ultra metal-poor stars (to astronomers, any atom bulkier than helium qualifies as metallic). According to the standard story of the Milky Way, these stars should be swarming throughout the halo, the first part of the galaxy to form. By contrast, stars in the disk—which was thought to have taken perhaps an additional billion years to spin itself flat—should be contaminated with heaver elements such as carbon and oxygen.